Limits

Calculus I

Contents

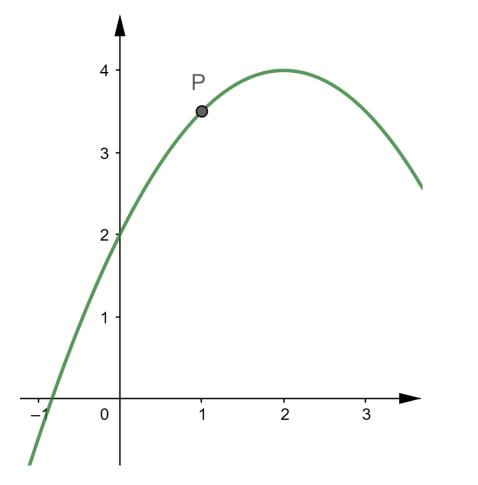
- Motivation
 - Numerical Approximations
- Definitions
- Theorems
 - Algebraic Theorem of Limits
 - Squeeze Theorem
- One sided limits
- Limits Involving Trigonometric Functions

- Infinity
 - Limits at infinity
 - Infinite Limits
- Limits of sequences
- Natural number e
 - Natural number *e* as a limits
 - Limits involving *e*
- Continuity of Functions

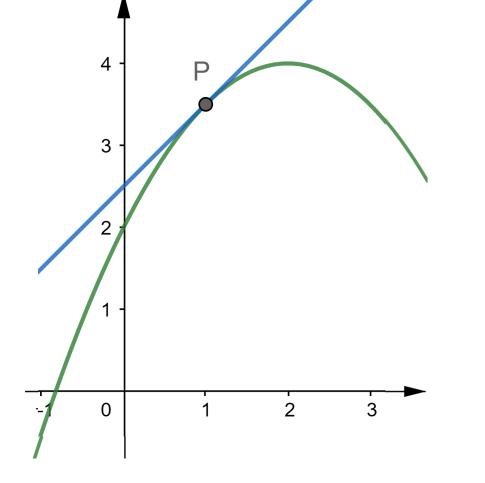
Motivation

Limits

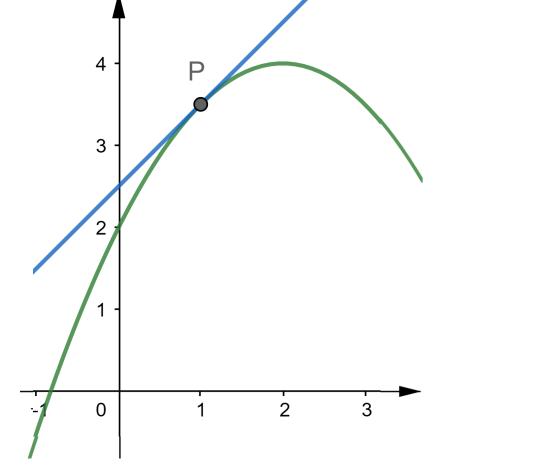
Motivation: Looking for a properties at some points

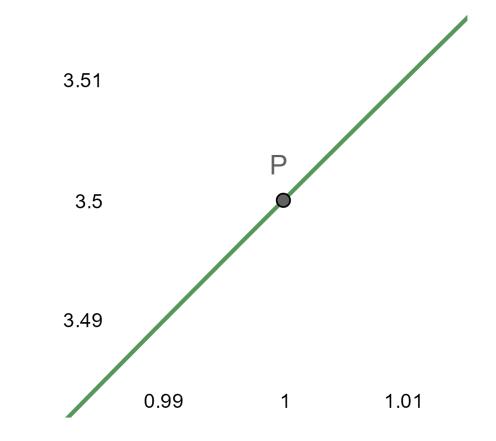


Motivation: Looking for a properties at some points



Motivation: Looking for a properties at some points



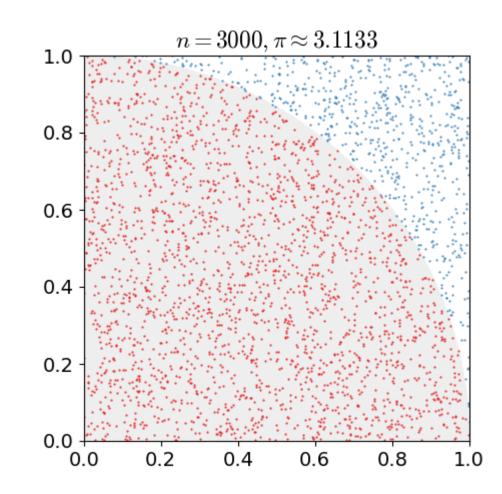


Long journey to find π

- Approximation π with 22/7 or 3.14 for which both are wrong
- Facts:

 $3.14 < \pi < 22/7$

- What is the exact value of π ?



• Series that "converge" to π :

$$\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right)$$

n	10	100	1000	10000	100000	1000000
π	3.04183961	3.13159290	3.14059265	3.14149265	3.14158265	3.14159165

• Series that "converge" to π :

$$\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right)$$

n	10	100	1000	10000	100000	1000000
π	3.04183961	3.13159290	3.14059265	3.14149265	3.14158265	3.14159165

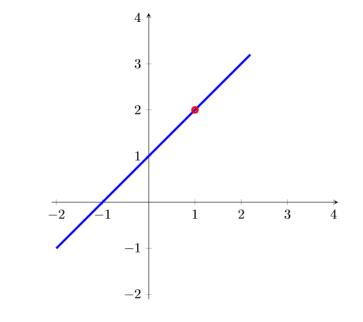
Motivation: Numerical Approximation

• Let *f* be function

$$f(x) = \frac{x^2 - 1}{x - 1}$$

- At x = 1, we got a problem, $\frac{0}{0}$ is not defined.
- But looking in the neighbourhood we got the following tables.

х	0.8	0.9	0.95	0.99	0.995	0.999	1	1.001	1.005	1.01	1.05	1.1	1.2
f(x)	1.8	1.9	1.95	1.99	1.995	1.999	??	2.001	2.005	2.01	2.05	2.1	2.2



Definition

Limits

Definition

- Let f be function defined on an open interval contains *c*, except possibly at c.
- If the value of f(x) get closer to L as x get closer to c we say that f has a limit at c.
- We may write $f(x) \rightarrow L$ as $x \rightarrow c$.

Definition

- Let f be function defined on an open interval contains *c*, except possibly at c.
- If the value of f(x) get closer to L as x get closer to c we say that f has a limit at c.
- We may write $f(x) \rightarrow L$ as $x \rightarrow c$.
- Formally, we write it

 $\lim_{x \to c} f(x) = L$

Formal Definition

Let f be function defined on an open interval contains c, except possibly at c. The limit of f(x) as x approach c is said to be equals to L, denoted by

$$\lim_{x \to c} f(x) = L$$

if for every $\epsilon > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$0 < |x - c| < \delta \Rightarrow 0 < |f(x) - L| < \epsilon$$

Example

Prove that function
$$f(x) = \frac{x^2-1}{x-1}$$
 has a limit at x=1, that is 2.

Example

Prove that function
$$f(x) = \frac{x^2-1}{x-1}$$
 has a limit at x=1, that is 2.

Proof. Given any $\epsilon > 0$ take $\delta = \epsilon$. Then, if we have $0 < |x - 1| < \delta$, one could find that

$$|f(x) - 2| = \left|\frac{x^2 - 1}{x - 1} - 2\right| = \left|\frac{(x + 1)(x - 1)}{x - 1} - 2\right| = |x + 1 - 2| = |x - 1| < \delta = \epsilon$$

Or simply, $|f(x) - 2| < \epsilon$.

Limits

Properties: Uniqueness

Theorem. If limit of f exists on x=c, then it is unique.

In that case, we may write $\lim_{x\to c} f(x)$ as the value of the limits.

Theorem. Let c and k be real numbers. We have the following properties.

 $\lim_{x \to c} f(k) = k$ $\lim_{x \to c} f(x) = c$

Theorem. Let *f* and *g* be functions; *k* and *c* be real number. Assume that the limit of f and g at c exists, then we have the following properties.

$$\lim_{x \to c} k f(x) + g(x)) = k \lim_{x \to c} f(x)$$

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

$$\lim_{x \to c} (f(x)g(x)) = \left(\lim_{x \to c} f(x)\right) \left(\lim_{x \to c} g(x)\right)$$

$$\lim_{x \to c} (f(x)/g(x)) = \left(\lim_{x \to c} f(x)\right) / \left(\lim_{x \to c} g(x)\right) \quad \text{if } \lim_{x \to c} g(x) \neq 0$$

Corollary. Let *f* be function; *n* be a natural number. Assume that the limit of f at c exists, then we have the following properties.

$$\lim_{x \to c} (f(x))^n = \left(\lim_{x \to c} f(x)\right)^n$$

$$\lim_{x \to c} (f(x))^{-n} = \left(\lim_{x \to c} f(x)\right)^{-n}$$

$$\lim_{x \to c} (f(x))^{1/n} = \left(\lim_{x \to c} f(x)\right)^{1/n}$$

if $\lim_{x \to c} f(x) \ge 0$ whenever *n* is even

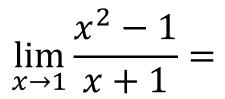
Example (1)

 $\lim_{x \to 1} 2x + 1 =$

Example (1)

$\lim_{x \to 1} 2x + 1 = \lim_{x \to 1} 2x + \lim_{x \to 1} 1 = 2\lim_{x \to 1} x + \lim_{x \to 1} 1 = 2.1 + 1 = 3$

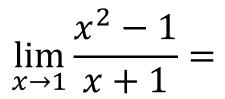
Example (2)



Example (2a)

$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \frac{\left(\lim_{x \to 1} x\right)^2 - 1}{\lim_{x \to 1} x + \lim_{x \to 1} 1} =$$

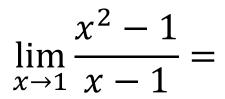
Example (2)



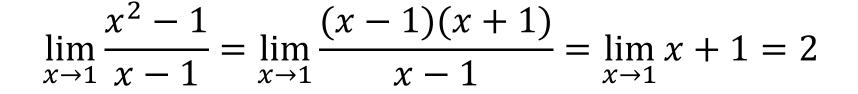
Example (2b)

$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x + 1} = \lim_{x \to 1} x - 1 = 0$$

Example (3)



Example (3)



Squeeze

Limits

Squeeze Theorem

Theorem. Let *f*,*g*,*h* be functions such that

 $f(x) \le g(x) \le h(x)$

for all x in the "neighbourhood" of c. If limit of *f*,*g*,*h* exists on *x*=*c*, then we have the following.

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x) \le \lim_{x \to c} h(x)$$

Moreover, if $\lim_{x\to c} f(x) = \lim_{x\to c} h(x)$ then all three limits are equals.

Example (3)

$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x^2}\right) =$$

Observe that

- $\bullet \lim_{x \to 0} x^2 = 0$
- $\bullet \lim_{x \to 0} (-x^2) = 0$
- $-1 \leq \sin(\theta) \leq 1$ for all θ .

Example (3)

 $\lim_{x \to 0} x^2 \sin\left(\frac{1}{x^2}\right) =$

Example (3)

$$-1 \le \sin\left(\frac{1}{x^2}\right) \le 1$$
$$-x^2 \le x^2 \sin\left(\frac{1}{x^2}\right) \le x^2$$
$$\lim_{x \to 0} \left(-x^2\right) \le \lim_{x \to 0} \left(x^2 \sin\left(\frac{1}{x^2}\right)\right) \le \lim_{x \to 0} \left(x^2\right)$$
$$0 \le \lim_{x \to 0} \left(x^2 \sin\left(\frac{1}{x^2}\right)\right) \le 0$$

$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x^2}\right) =$$