Limits

Calculus I

Contents

- Motivation
	- Numerical Approximations
- Definitions
- Theorems
	- Algebraic Theorem of Limits
	- Squeeze Theorem
- One sided limits
- Limits Involving Trigonometric Functions
- Infinity
	- Limits at infinity
	- Infinite Limits
- Limits of sequences
- Natural number e
	- Natural number *e* as a limits
	- Limits involving *e*
- Continuity of Functions

Motivation

Limits

Motivation: Looking for a properties at some points

Motivation: Looking for a properties at some points

Motivation: Looking for a properties at some points

Motivation: Looking for a pattern

Long journey to find π

- Approximation π with 22/7 or 3.14 for which both are wrong
- Facts:

 $3.14 < \pi < 22/7$

- What is the exact value of π ?

Motivation: Looking for a pattern

Motivation: Looking for a pattern

• Series that "converge" to π :

$$
\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right)
$$

Motivation: Looking for a pattern

• Series that "converge" to π :

$$
\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right)
$$

Motivation: Numerical Approximation

• Let *f* be function

$$
f(x) = \frac{x^2 - 1}{x - 1}
$$

- At $x = 1$, we got a problem, $\frac{0}{0}$ 0 is not defined.
- But looking in the neighbourhood we got the following tables.

Definition

Limits

Definition

- Let f be function defined on an open interval contains *c,* except possibly at c.
- If the value of $f(x)$ get closer to L as x get closer to c we say that f has a limit at c.
- We may write $f(x) \rightarrow L$ as $x \rightarrow c$.

Definition

- Let f be function defined on an open interval contains *c,* except possibly at c.
- If the value of $f(x)$ get closer to L as x get closer to c we say that f has a limit at c.
- We may write $f(x) \to L$ as $x \to c$.
- Formally, we write it

lim $x\rightarrow c$ $f(x)=L$

Formal Definition

Let f be function defined on an open interval contains *c,* except possibly at c. The limit of $f(x)$ as x approach *c* is said to be equals to L, denoted by

$$
\lim_{x \to c} f(x) = L
$$

if for every $\epsilon > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$
0 < |x - c| < \delta \Rightarrow 0 < |f(x) - L| < \epsilon
$$

Example

Prove that function
$$
f(x) = \frac{x^2 - 1}{x - 1}
$$
 has a limit at x=1, that is 2.

Example

Prove that function
$$
f(x) = \frac{x^2 - 1}{x - 1}
$$
 has a limit at x=1, that is 2.

Proof. Given any $\epsilon > 0$ take $\delta = \epsilon$. Then, if we have $0 < |x - 1| < \delta$, one could find that

$$
|f(x) - 2| = \left| \frac{x^2 - 1}{x - 1} - 2 \right| = \left| \frac{(x + 1)(x - 1)}{x - 1} - 2 \right| = |x + 1 - 2| = |x - 1| < \delta = \epsilon
$$

Or simply, $|f(x) - 2| < \epsilon$.

Limits

Properties: Uniqueness

Theorem. If limit of *f* exists on *x=c*, then it is unique.

In that case, we may write lim $x\rightarrow c$ $f(x)$ as the value of the limits.

Theorem. Let c and k be real numbers. We have the following properties.

lim $x\rightarrow c$ $f(k)=k$ lim $x \rightarrow c$ $f(x)=c$

Theorem. Let *f* and *g* be functions; *k* and *c* be real number. Assume that the limit of f and g at c exists, then we have the following properties.

$$
\lim_{x \to c} k f(x) + g(x) = k \lim_{x \to c} f(x)
$$
\n
$$
\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)
$$
\n
$$
\lim_{x \to c} (f(x)g(x)) = (\lim_{x \to c} f(x)) (\lim_{x \to c} g(x))
$$
\n
$$
\lim_{x \to c} (f(x)/g(x)) = (\lim_{x \to c} f(x)) / (\lim_{x \to c} g(x)) \quad \text{if } \lim_{x \to c} g(x) \neq 0
$$

Corollary. Let *f* be function; *n* be a natural number. Assume that the limit of f at c exists, then we have the following properties.

$$
\lim_{x \to c} (f(x))^n = (\lim_{x \to c} f(x))^n
$$
\n
$$
\lim_{x \to c} (f(x))^{-n} = (\lim_{x \to c} f(x))^{-n}
$$
\nif $\lim_{x \to c} f(x) \neq 0$
\n
$$
\lim_{x \to c} (f(x))^{1/n} = (\lim_{x \to c} f(x))^{1/n}
$$
\nif $\lim_{x \to c} f(x) \ge 0$ whenever *n* is even

Example (1)

 $\lim_{x \to 1} 2x + 1 =$

Example (1)

$\lim_{x \to 0} 2x + 1 = \lim_{x \to 0} 2x + \lim_{x \to 1} 1 = 2 \lim_{x \to 1} x + \lim_{x \to 1} 1 = 2.1 + 1 = 3$ $x\rightarrow 1$ $x\rightarrow 1$ $x\rightarrow 1$ $x\rightarrow 1$ $x\rightarrow 1$

Example (2)

Example (2a)

$$
\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \frac{\left(\lim_{x \to 1} x\right)^2 - 1}{\lim_{x \to 1} x + \lim_{x \to 1} 1} =
$$

Example (2)

Example (2b)

$$
\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x + 1} = \lim_{x \to 1} x - 1 = 0
$$

Example (3)

Example (3)

$$
\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} x + 1 = 2
$$

Squeeze

Limits

Squeeze Theorem

Theorem. Let *f,g,h* be functions such that

 $f(x) \leq g(x) \leq h(x)$

for all x in the "neighbourhood" of c. If limit of *f,g,h* exists on *x=c*, then we have the following.

$$
\lim_{x \to c} f(x) \le \lim_{x \to c} g(x) \le \lim_{x \to c} h(x)
$$

Moreover, if lim $x\rightarrow c$ $f(x)$ = lim $x \rightarrow c$ $h(x)$ then all three limits are equals.

Example (3)

$$
\lim_{x \to 0} x^2 \sin\left(\frac{1}{x^2}\right) =
$$

Observe that

- $\lim_{x \to 0} x^2 = 0$ $x\rightarrow 0$
- lim $x\rightarrow 0$ $-x^2$) = 0
- $-1 \leq \sin(\theta) \leq 1$ for all θ .

Example (3)

$$
\lim_{x \to 0} x^2 \sin\left(\frac{1}{x^2}\right) =
$$

Example (3)

$$
-1 \le \sin\left(\frac{1}{x^2}\right) \le 1
$$

$$
-x^2 \le x^2 \sin\left(\frac{1}{x^2}\right) \le x^2
$$

$$
\lim_{x \to 0} (-x^2) \le \lim_{x \to 0} \left(x^2 \sin\left(\frac{1}{x^2}\right)\right) \le \lim_{x \to 0} (x^2)
$$

$$
0 \le \lim_{x \to 0} \left(x^2 \sin\left(\frac{1}{x^2}\right)\right) \le 0
$$

$$
\lim_{x \to 0} x^2 \sin\left(\frac{1}{x^2}\right) =
$$