Limits

Calculus 1

Contents

- Motivation
	- Numerical Approximations
- Definitions
- Theorems
	- Algebraic Theorem of Limits
	- Squeeze Theorem
- One sided limits
- Limits Involving Trigonometric Functions
- Infinity
	- Limits at infinity
	- Infinite Limits
- Limits of sequences
- Natural number e
	- Natural number *e* as a limits
	- Limits involving *e*
- Continuity of Functions

No Limits?

Limits

No Limits?

One Sided Limits

Limits

One Sided Limits

- Limits in the end of the intervals
- Limits on functions that has two different domain
- Limits on piecewise function

Definition

Let f be function defined on an open interval contains *c,* except possibly at c.

- If the value of $f(x)$ get closer to L as $x < c$ get closer to c we say that f has a left-hand limit at c.
- If the value of $f(x)$ get closer to L as $x > c$ get closer to c we say that f has a right-hand limit at c.
- We write left-hand limit and right-hand limit as

$$
\lim_{x \to c^{-}} f(x) = L \qquad \text{and} \quad \lim_{x \to c^{+}} f(x) = L
$$

respectively.

Formal Definition

Let f be function defined on an open interval contains *c,* except possibly at c. The left-hand limit of $f(x)$ as x approach *c* is said to be equals to L, denoted by

$$
\lim_{x \to c^-} f(x) = L
$$

if for every $\epsilon > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$
0 < c - x < \delta \Rightarrow 0 < |f(x) - L| < \epsilon
$$

Formal Definition

Let f be function defined on an open interval contains *c,* except possibly at c. The right-hand limit of $f(x)$ as x approach *c* is said to be equals to L, denoted by

$$
\lim_{x \to c^+} f(x) = L
$$

if for every $\epsilon > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$
0 < x - c < \delta \Rightarrow 0 < |f(x) - L| < \epsilon
$$

Let f be function on interval contains c except possibly at c . We have

lim $x\rightarrow c$ $f(x) = L$ if and only if \lim_{Ω} $x \rightarrow c^$ $f(x) = L$ and $\lim_{h \to 0}$ $x \rightarrow c^$ $f(x)=L$

Corollary

Let f be function on interval contains c except possibly at c . If we have

$$
\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = L
$$

then lim $x \rightarrow c$ $f(x)$ exist and \lim $x \rightarrow c$ $f(x) = L.$

• Consider ReLU function

$$
f(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

• Does it have limits on *x=*0?

• Consider ReLU function

$$
f(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

- Does it have limits on *x=*0?
- lim $x \rightarrow 0^$ $f(x) =$
- lim $x \rightarrow 0^+$ $f(x) =$

• Consider step function

$$
f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

• Does it have limits on *x=*0?

• Consider step function

$$
f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

- Does it have limits on *x=*0?
- lim $x \rightarrow 0^$ $f(x) =$
- lim $x \rightarrow 0^+$ $f(x) =$

• Consider step function

$$
f(x) = \begin{cases} x^2 - 1 & x \ge 1 \\ x - 1 & x < 1 \end{cases}
$$

- Does it have limits on *x=*0?
- lim $x\rightarrow 1^$ $f(x) =$
- lim $x \rightarrow 1^+$ $f(x) =$

QnA

Calculus 1

Infinity

Limits

Infinite limits

• Does lim $x\rightarrow 0$ 1 χ exist? • Does lim $x \rightarrow 0^-$ 1 χ exist? • Does lim $x \rightarrow 0^+$ 1 χ exist?

Infinite limits

• Does lim $x\rightarrow 0$ 1 χ exist? • Does lim $x \rightarrow 0^-$ 1 χ exist? • Does lim $x \rightarrow 0^+$ 1 χ exist?

Infinite limits 100 M 80 1 • Does lim $\frac{1}{x^2}$ exist? $x\rightarrow 0$ 1 60 • Does lim $\frac{1}{x^2}$ exist? $x \rightarrow 0^-$ 1 • Does lim $\frac{1}{x^2}$ exist? 40 $x \rightarrow 0^+$ 20

 -4

 $-3\,$

 -2

 -1

 $\,x$

 $\overline{4}$

3

 $\overline{2}$

Formal Definition

Let f be function defined on an open interval contains *c,* except possibly at c. The limit of $f(x)$ as x approach *c* is said to be equals to infinity, ∞ , denoted by

$$
\lim_{x\to c} f(x) = \infty
$$

if for every $M > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$
0 < |x - c| < \delta \Rightarrow f(x) > M
$$

Formal Definition

Let f be function defined on an open interval contains *c,* except possibly at c. The limit of $f(x)$ as x approach *c* is said to be equals to minus infinity, $-\infty$, denoted by

$$
\lim_{x\to c} f(x) = \infty
$$

if for every $M > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$
0 < |x - c| < \delta \Rightarrow f(x) < -M
$$

Limits at Infinity

1 • How does $f(x) =$ behave as x goes bigger? χ 1 $4 \frac{4}{3}y$ • How does $f(x) =$ behave as x goes "smaller"? χ $\,2$ \boldsymbol{x} $-100\,$ $50\,$ -50 100 -2

Formal Definition

Let f be function defined on an open interval (k, ∞) , for some k. The limit of $f(x)$ as x approach ∞ is said to be equals to L, denoted by

$$
\lim_{x\to\infty}f(x)=L
$$

if for every $\epsilon > 0$, there exist $M > 0$ so that every $x \in D_f$ this implication holds:

$$
M < x \Rightarrow 0 < |f(x) - L| < \epsilon
$$

Formal Definition

Let f be function defined on an open interval (k, ∞) , for some k. The limit of $f(x)$ as x approach $-\infty$ is said to be equals to L, denoted by

$$
\lim_{x \to -\infty} f(x) = L
$$

if for every $\epsilon > 0$, there exist M > 0 so that every $x \in D_f$ this implication holds:

$$
-M > x \Rightarrow 0 < |f(x) - L| < \epsilon
$$

Theorem

If $r > 0$ then we have the following limits.

If we want to compute the limits of $P(x) / Q(x)$ one may divide by x^n where *n* is the highest power of x involved.

Example (1)

Find the following limits, if any.

$$
\lim_{x \to \infty} \frac{x^2 + x + 1}{x^2 + 1} =
$$

Example (1)

Find the following limits, if any.

Example (1)

Find the following limits, if any.

 $=$

$$
\lim_{x \to \infty} \frac{x^2 + x + 1}{x^2 + 1} = \lim_{x \to \infty} \frac{(x^2/x^2) + (x/x^2) + (1/x^2)}{(x^2/x^2) + (1/x^2)}
$$

$$
= \frac{\lim_{x \to \infty} (1 + \frac{1}{x} + \frac{1}{x^2})}{\lim_{x \to \infty} (1 + \frac{1}{x^2})}
$$

$$
= \frac{\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x^2}}
$$

Example (2)

Find the following limits, if any.

$$
\lim_{x \to \infty} \frac{\sqrt{x^2 + x + 1}}{x + 1} =
$$

Example (2)

Find the following limits, if any.

 \equiv

$$
\lim_{x \to \infty} \frac{\sqrt{x^2 + x + 1}}{x + 1} = \lim_{x \to \infty} \frac{\frac{1}{x} \sqrt{x^2 + x + 1}}{\frac{1}{x} (x + 1)}
$$
\n
$$
= \lim_{x \to \infty} \frac{\sqrt{(x^2 / x^2) + (x / x^2) + (1 / x^2)}}{(x / x) + (1 / x)}
$$
\n
$$
= \frac{\sqrt{\lim_{x \to \infty} (1 + \frac{1}{x} + \frac{1}{x^2})}}{\lim_{x \to \infty} (1 + \frac{1}{x})}
$$

QnA

Calculus 1

Limits Involving Trigonometric Functions

Limits

Limits of $sin(x)$ and $cos(x)$

Theorem. For any real number *c* we have

- lim $x\rightarrow c$ $sin(x) = c$
- lim $cos(x) = c$ $x \rightarrow c$

We also have that the limits of both sin(x) and cos(x), as $x \to \infty$ do not exist.

Limits of
$$
f(x) = \sin(x)/x
$$

For any x such that $0 < x <$ π 2 we have

 $x \cos x \leq \sin x \leq x$

and it means

$$
\cos x \le \frac{\sin x}{x} \le 1
$$

Taking limits on the three sides we conclude that

$$
\lim_{x\to 0}\frac{\sin x}{x}
$$

Limits of
$$
f(x) = \tan(x)/x
$$

Note that

$$
\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{1}{x} \frac{\sin x}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1}{\cos x} = \left(\lim_{x \to 0} \frac{\sin x}{x}\right) \left(\lim_{x \to 0} \frac{1}{\cos x}\right)
$$

Hence, we have

$$
\lim_{x \to 0} \frac{\tan x}{x} = 1.
$$

Limits of
$$
f(x) = \sin(ax)/ax
$$

Notice that as $x \to 0$ we would expect $ax \to 0$ for any reals a. So, once we substitute $u = ax$, we would have

$$
\lim_{x \to 0} \frac{\sin ax}{ax} = \lim_{\alpha x \to 0} \frac{\sin ax}{ax} = \lim_{u \to 0} \frac{\sin u}{u} = 1.
$$

Hence
$$
\lim_{x \to 0} \frac{\sin ax}{ax} = 1.
$$

With the same argument, we would have $\lim_{n \to \infty}$ $x \rightarrow 0$ ax $\tan ax$ $= 1.$

QnA

Calculus 1

Euler number e

Limits

Compound Interest rate 100%

Compound Interest rate 100%

Euler number

Theorem. The limits of the following sequences does exist.

$$
\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n
$$

and the limits called *e,* the Euler number.

Euler number

Theorem. The limits of the following sequences does exist.

$$
\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x
$$

and the limits called *e,* the Euler number.

Euler number

What does *e* for?

• Natural logarithm on computing.

 $\log x = \log_{10} x$ or $\log x = \log_e x$

- Any exponential function $f(x) = a^x$ could be represented as $f(x) = e^{a \log x}$
- Function $f(x) = e^x$ is the only function that has derivative itself.

Natural number *e* on Machine Learning

• Sigmoid function

$$
sigm(x) = \frac{1}{1+e^{-x}} ,
$$

for $x \in \mathbb{R}$

• Logit

$$
logit(x) = \log \frac{x}{1-x}
$$

for $x \in (0,1)$

Natural number *e* on Machine Learning

• Standard *normal density*

$$
\phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},
$$

For any $x \in \mathbb{R}$.

• Exponential density

$$
e(x; \lambda) = \lambda e^{-\lambda x},
$$

for $x \in [0, \infty)$.

Limits involving e

Some limits involving *e* that one could derive from the definition.

• lim $x\rightarrow\infty$ $1 +$ 1 χ χ • lim $1 -$ 1 \mathcal{X} = 1

e

- $= e$ (the definition)
	- (taking $x \leftarrow -x$)
- lim $x \rightarrow -\infty$ $1 +$ 1 χ χ

 χ

 $x\rightarrow\infty$

- (taking $x \leftarrow -x$) $1/x = e$ (taking $x \leftarrow \frac{1}{x}$ χ from prev)
- $\lim_{x \to 0} (1 + x)$ $x\rightarrow 0$

Find the following limits, if any.

$$
\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx} =
$$

Find the following limits, if any.

$$
\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx} = \lim_{x \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^{ab}
$$

as $x \to \infty$ we have $\frac{x}{a}$ \boldsymbol{a} $\rightarrow \infty$. Substitute $u =$ χ \boldsymbol{a} and we would have

$$
= \lim_{x/a \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^{ab} = \lim_{u \to \infty} \left(\left(1 + \frac{1}{u} \right)^{u} \right)^{ab} = e^{ab}
$$

Find the following limits, if any.

$$
\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx} = \lim_{x \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^{ab}
$$

as
$$
x \to \infty
$$
 we have $\frac{x}{a} \to \infty$.

QnA

Calculus 1

End of Session

Calculus 1