Limits

Calculus 1

Contents

- Motivation
 - Numerical Approximations
- Definitions
- Theorems
 - Algebraic Theorem of Limits
 - Squeeze Theorem
- One sided limits
- Limits Involving Trigonometric Functions

- Infinity
 - Limits at infinity
 - Infinite Limits
- Limits of sequences
- Natural number e
 - Natural number *e* as a limits
 - Limits involving *e*
- Continuity of Functions

No Limits?

Limits

No Limits?

One Sided Limits

Limits

One Sided Limits

- Limits in the end of the intervals
- Limits on functions that has two different domain
- Limits on piecewise function

Definition

Let f be function defined on an open interval contains c, except possibly at c.

- If the value of f(x) get closer to L as x < c get closer to c we say that f has a left-hand limit at c.
- If the value of f(x) get closer to L as x > c get closer to c we say that f has a right-hand limit at c.
- We write left-hand limit and right-hand limit as

$$\lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L$$

respectively.

Formal Definition

Let f be function defined on an open interval contains c, except possibly at c. The left-hand limit of f(x) as x approach c is said to be equals to L, denoted by

$$\lim_{x \to c^-} f(x) = L$$

if for every $\epsilon > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$0 < c - x < \delta \Rightarrow 0 < |f(x) - L| < \epsilon$$

Formal Definition

Let f be function defined on an open interval contains c, except possibly at c. The right-hand limit of f(x) as x approach c is said to be equals to L, denoted by

$$\lim_{x \to c^+} f(x) = L$$

if for every $\epsilon > 0$, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$0 < x - c < \delta \Rightarrow 0 < |f(x) - L| < \epsilon$$

Let *f* be function on interval contains *c* except possibly at *c*. We have

 $\lim_{x \to c} f(x) = L \text{ if and only if } \lim_{x \to c^-} f(x) = L \text{ and } \lim_{x \to c^-} f(x) = L$

Corollary

Let *f* be function on interval contains *c* except possibly at *c*. If we have

$$\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = L$$

then $\lim_{x\to c} f(x)$ exist and $\lim_{x\to c} f(x) = L$.

• Consider ReLU function

$$f(x) = \begin{cases} x & x \ge 0\\ 0 & x < 0 \end{cases}$$

• Does it have limits on *x*=0?

Consider ReLU function

$$f(x) = \begin{cases} x & x \ge 0\\ 0 & x < 0 \end{cases}$$

- Does it have limits on x=0?
- $\lim_{x \to 0^{-}} f(x) =$ $\lim_{x \to 0^{+}} f(x) =$

• Consider step function

$$f(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

• Does it have limits on x=0?

• Consider step function

$$f(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

- Does it have limits on x=0?
- $\lim_{x \to 0^{-}} f(x) =$ $\lim_{x \to 0^{+}} f(x) =$

• Consider step function

$$f(x) = \begin{cases} x^2 - 1 & x \ge 1\\ x - 1 & x < 1 \end{cases}$$

- Does it have limits on *x*=0?
- $\lim_{x \to 1^{-}} f(x) =$ $\lim_{x \to 1^{+}} f(x) =$

QnA

Calculus 1

Infinity

Limits

Infinite limits

• Does $\lim_{x \to 0} \frac{1}{x}$ exist? • Does $\lim_{x \to 0^{-}} \frac{1}{x}$ exist? • Does $\lim_{x \to 0^{+}} \frac{1}{x}$ exist?

Infinite limits

• Does $\lim_{x \to 0} \frac{1}{x}$ exist? • Does $\lim_{x \to 0^{-}} \frac{1}{x}$ exist? • Does $\lim_{x \to 0^{+}} \frac{1}{x}$ exist?

Infinite limits 100 80 • Does $\lim_{x\to 0} \frac{1}{x^2}$ exist? • Does $\lim_{x\to 0^-} \frac{1}{x^2}$ exist? 60 • Does $\lim_{x\to 0^+} \frac{1}{x^2}$ exist? 4020

-3

-4

-2

 $^{-1}$

x

4

3

 $\mathbf{2}$

Formal Definition

Let f be function defined on an open interval contains c, except possibly at c. The limit of f(x) as x approach c is said to be equals to infinity, ∞ , denoted by

$$\lim_{x\to c} f(x) = \infty$$

if for every M > 0, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$0 < |x - c| < \delta \Rightarrow f(x) > M$$

Formal Definition

Let f be function defined on an open interval contains c, except possibly at c. The limit of f(x) as x approach c is said to be equals to minus infinity, $-\infty$, denoted by

$$\lim_{x\to c} f(x) = \infty$$

if for every M > 0, there exist $\delta > 0$ so that every $x \in D_f$ this implication holds:

$$0 < |x - c| < \delta \Rightarrow f(x) < -M$$

Limits at Infinity

• How does $f(x) = \frac{1}{x}$ behave as x goes bigger? • How does $f(x) = \frac{1}{x}$ behave as x goes "smaller"? $4 \uparrow y$ $\mathbf{2}$ x-10050-50100-2

Formal Definition

Let f be function defined on an open interval (k, ∞) , for some k. The limit of f(x) as x approach ∞ is said to be equals to L, denoted by

$$\lim_{x\to\infty}f(x)=L$$

if for every $\epsilon > 0$, there exist M > 0 so that every $x \in D_f$ this implication holds:

$$M < x \Rightarrow 0 < |f(x) - L| < \epsilon$$

Formal Definition

Let f be function defined on an open interval (k, ∞) , for some k. The limit of f(x) as x approach $-\infty$ is said to be equals to L, denoted by

$$\lim_{x \to -\infty} f(x) = L$$

if for every $\epsilon > 0$, there exist M > 0 so that every $x \in D_f$ this implication holds:

$$-M > x \Rightarrow 0 < |f(x) - L| < \epsilon$$

Theorem

If r > 0 then we have the following limits.

If we want to compute the limits of P(x) / Q(x) one may divide by x^n where *n* is the highest power of x involved.

Example (1)

Find the following limits, if any.

$$\lim_{x \to \infty} \frac{x^2 + x + 1}{x^2 + 1} =$$

Example (1)

Find the following limits, if any.

$$\lim_{x \to \infty} \frac{x^2 + x + 1}{x^2 + 1} = \frac{\lim_{x \to \infty} x^2 + x + 1}{\lim_{x \to \infty} x^2 + 1}$$
$$= \frac{\lim_{x \to \infty} x^2 + \lim_{x \to \infty} x + \lim_{x \to \infty} 1}{\lim_{x \to \infty} x^2 + \lim_{x \to \infty} 1}$$

Example (1)

Find the following limits, if any.

=

$$\lim_{x \to \infty} \frac{x^2 + x + 1}{x^2 + 1} = \lim_{x \to \infty} \frac{(x^2/x^2) + (x/x^2) + (1/x^2)}{(x^2/x^2) + (1/x^2)}$$
$$= \frac{\lim_{x \to \infty} (1 + \frac{1}{x} + \frac{1}{x^2})}{\lim_{x \to \infty} (1 + \frac{1}{x^2})}$$
$$= \frac{\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x^2}}$$

Example (2)

Find the following limits, if any.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + x + 1}}{x + 1} =$$

Example (2)

Find the following limits, if any.

_

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + x + 1}}{x + 1} = \lim_{x \to \infty} \frac{\frac{1}{x}\sqrt{x^2 + x + 1}}{\frac{1}{x}(x + 1)}$$
$$= \lim_{x \to \infty} \frac{\sqrt{(x^2/x^2) + (x/x^2) + (1/x^2)}}{(x/x) + (1/x)}$$
$$= \frac{\sqrt{\lim_{x \to \infty} (1 + \frac{1}{x} + \frac{1}{x^2})}}{\lim_{x \to \infty} (1 + \frac{1}{x})}$$

QnA

Calculus 1

Limits Involving Trigonometric Functions

Limits

Limits of sin(x) and cos(x)

Theorem. For any real number *c* we have

- $\lim_{x \to c} \sin(x) = c$
- $\lim_{x \to c} \cos(x) = c$

We also have that the limits of both sin(x) and cos(x), as $x \to \infty$ do not exist.

Limits of
$$f(x) = sin(x)/x$$

For any x such that $0 < x < \frac{\pi}{2}$ we have

 $x \cos x \le \sin x \le x$

and it means

$$\cos x \le \frac{\sin x}{x} \le 1$$

Taking limits on the three sides we conclude that

$$\lim_{x \to 0} \frac{\sin x}{x}$$

Limits of
$$f(x) = tan(x)/x$$

Note that

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{1}{x} \frac{\sin x}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1}{\cos x} = \left(\lim_{x \to 0} \frac{\sin x}{x}\right) \left(\lim_{x \to 0} \frac{1}{\cos x}\right)$$

Hence, we have

$$\lim_{x \to 0} \frac{\tan x}{x} = 1.$$

Limits of
$$f(x) = sin(ax)/ax$$

Notice that as $x \to 0$ we would expect $ax \to 0$ for any reals a. So, once we substitute u = ax, we would have

$$\lim_{x \to 0} \frac{\sin ax}{ax} = \lim_{ax \to 0} \frac{\sin ax}{ax} = \lim_{u \to 0} \frac{\sin u}{u} = 1.$$

Hence
$$\lim_{x \to 0} \frac{\sin ax}{ax} = 1.$$

With the same argument, we would have $\lim_{x\to 0} \frac{\tan ax}{ax} = 1$.

QnA

Calculus 1

Euler number e

Limits

Compound Interest rate 100%

Time for interest is credited	End of the year	Value
1 year	1 + 1	2
6 month	$\left(1+\frac{1}{2}\right)^2$	2,25
1 bulan	$\left(1+\frac{1}{12}\right)^{12}$	2,61304
1 hari	$\left(1+\frac{1}{365}\right)^{365}$	2,71456
1 jam	$\left(1 + \frac{1}{24 \times 365}\right)^{24 \times 365}$	2,71813
1 menit	$\left(1 + \frac{1}{60 \times 24 \times 365}\right)^{60 \times 24 \times 365}$	2, 71828
1 detik	$\left(1 + \frac{1}{60 \times 60 \times 24 \times 365}\right)^{60 \times 60 \times 24 \times 365}$	2, 71828

Compound Interest rate 100%

Euler number

Theorem. The limits of the following sequences does exist.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

and the limits called *e*, the Euler number.

Euler number

Theorem. The limits of the following sequences does exist.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

and the limits called *e*, the Euler number.

Euler number

What does *e* for?

• Natural logarithm on computing.

 $\log x = \log_{10} x$ or $\log x = \log_e x$

- Any exponential function $f(x) = a^x$ could be represented as $f(x) = e^{a \log x}$
- Function $f(x) = e^x$ is the only function that has derivative itself.

Natural number *e* on Machine Learning

• Sigmoid function

$$sigm(x) = \frac{1}{1+e^{-x}}$$
 ,

for $x \in \mathbb{R}$

• Logit

$$logit(x) = \log \frac{x}{1-x}$$
 for $x \in (0,1)$

Natural number *e* on Machine Learning

• Standard normal density

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

For any $x \in \mathbb{R}$.

• Exponential density

$$e(x; \lambda) = \lambda e^{-\lambda x}$$
,
for $x \in [0, \infty)$.

Limits involving e

Some limits involving *e* that one could derive from the definition.

• $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$ (the definition) • $\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$

(taking
$$x \leftarrow -x$$
)

• $\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$

 $\chi \rightarrow 0$

(taking $x \leftarrow -x$) • $\lim_{x \to 0} (1+x)^{1/x} = e$ (taking $x \leftarrow \frac{1}{x}$ from prev)

Find the following limits, if any.

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx} =$$

Find the following limits, if any.

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx} = \lim_{x \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^{ab}$$

as $x \to \infty$ we have $\frac{x}{a} \to \infty$. Substitute $u = \frac{x}{a}$ and we would have

$$= \lim_{x/a \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^{ab} = \lim_{u \to \infty} \left(\left(1 + \frac{1}{u} \right)^{u} \right)^{ab} = e^{ab}$$

Find the following limits, if any.

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx} = \lim_{x \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^{ab}$$

as
$$x \to \infty$$
 we have $\frac{x}{a} \to \infty$.

QnA

Calculus 1

End of Session

Calculus 1